N17/4/PHYSI/SP2/ENG/TZ0/XX/M

Markscheme

November 2017

Physics

Standard level

Paper 2

12 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questic	on	Answers	Notes	Total
1.	а		arrow vertically downwards labelled weight «of sledge and/or girl»/ <i>W</i> /mg/gravitational force/ <i>F</i> g/ <i>F</i> gravitational <i>AND</i> arrow perpendicular to the snow slope labelled reaction force/ <i>R</i> /normal contact force/ <i>N</i> / <i>F</i> _N \checkmark friction force/ <i>F</i> / <i>f</i> acting up slope «perpendicular to reaction force» \checkmark	Do not allow G/g/"gravity". Do not award MP1 if a "driving force" is included. Allow components of weight if correctly labelled. Ignore point of application or shape of object. Ignore "air resistance". Ignore any reference to "push of feet on sledge". Do not award MP2 for forces on sledge on horizontal ground The arrows should contact the object	2
1.	b		gravitational force/weight from the Earth «downwards» ✓ reaction force from the sledge/snow/ground «upwards» ✓ no vertical acceleration/remains in contact with the ground/does not move vertically as there is no resultant vertical force ✓	Allow naming of forces as in (a) Allow vertical forces are balanced/equal in magnitude/cancel out	3
1.	C		mention of conservation of momentum OR $5.5 \times 4.2 = (55 + 5.5) \ll \vee \gg \checkmark$ $0.38 \ll m s^{-1} \gg \checkmark$	Allow $p = p'$ or other algebraically equivalent statement Award [0] for answers based on energy	2

(Question 1 continued)

C	Questi	on	Answers	Notes	Total
1.	d		same change in momentum/impulse \checkmark the time taken «to stop» would be greater «with the snow» \checkmark $F = \frac{\Delta p}{\Delta t}$ therefore <i>F</i> is smaller «with the snow» <i>OR</i> force is proportional to rate of change of momentum therefore <i>F</i> is smaller «with the snow» \checkmark	Allow reverse argument for ice	3
1.	e	i	«friction force down slope» = $\mu mg \cos(6.5) = (5.9 \text{ N}) \checkmark$ «component of weight down slope» = $mg \sin(6.5) \ll 6.1 \text{ N} \checkmark$ «so $a = \frac{F}{m}$ » acceleration = $\frac{12}{5.5} = 2.2 \ll \text{ms}^{-2} \gg \checkmark$	Ignore negative signs Allow use of $g = 10 m s^{-2}$	3
1.	e	ii	correct use of kinematics equation \checkmark distance = 4.4 or 4.0 «m» \checkmark Alternative 2 KE lost = work done against friction + GPE \checkmark distance = 4.4 or 4.0 «m» \checkmark	Allow ECF from (e)(i) Allow [1 max] for GPE missing leading to 8.2 «m»	2

(Question 1 continued)

C	Questi	on	Answers	Notes	Total
1.	f		calculates a maximum value for the frictional force = « μR = » 7.5 « N » \checkmark		
			sledge will not move as the maximum static friction force is greater than	Allow correct conclusion from incorrect MP1	2
		the component of weight down the slope \checkmark		Allow 7.5 > 6.1 so will not move	

Q	Question		Answers	Notes	Total
2.	a		it has a lepton number of 1 «as lepton number is conserved» \checkmark		2
			it has a charge of zero/is neutral «as charge is conserved»		
			OR	Do not credit answers referring to energy	
			it has a baryon number of 0 «as baryon number is conserved» \checkmark		
2.	b		hadrons experience strong force	Accept leptons experience the weak force	
			OR	Allow "interaction" for "force"	
			leptons do not experience the strong force \checkmark		
			hadrons made of quarks/not fundamental		
			OR		2 max
			leptons are not made of quarks/are fundamental \checkmark		
			hadrons decay «eventually» into protons		
			OR		
			leptons do not decay into protons ✓		

Q	Questi	on	Answers	Notes	Total
3.	а	i	« $l = \frac{RA}{\rho} = \frac{82 \times 8 \times 10^{-3} \times 2 \times 10^{-6}}{4.1 \times 10^{-5}}$ » 0.032 «m» ✓		1
3.	а	ii	power = $1500 \times 8 \times 10^{-3} \times 0.032 \ll = 0.384 \gg \checkmark$ «current ≤ $\sqrt{\frac{\text{power}}{\text{resistance}}} = \sqrt{\frac{0.384}{82}} \approx$ 0.068 «A» ✓	Award [1] for 4.3 «A» where candidate has not calculated area	2
3.	а	111	quantities such as resistivity depend on the material OR they allow the selection of the correct material OR they allow scientists to compare properties of materials ✓		1
3.	b		as area is larger and length is smaller ✓ resistance is «very much» smaller ✓	Award [1 max] for answers that involve a calculation	2

(Question 3 continued)

C	Questior	Answers	Notes	Total
3.	С	complete functional circuit with ammeter in series with resistor and voltmeter across it ✓ potential divider arrangement correct ✓	eg:	2

Q	Question		Answers	Notes	Total
4.	а	i	$\ll v = c \frac{\sin i}{\sin r} = \gg \frac{3 \times 10^8 \times \sin(33)}{\sin(46)} \checkmark$		2
			$2.3 \times 10^8 \text{ sm s}^{-1} \text{ s} \checkmark$		
4.	а	ii	light strikes AB at an angle of 57° \checkmark		
			critical angle is $\sin^{-1}\left(\frac{2.3}{3}\right) = \gg 50.1^{\circ}$ \checkmark	49.2° from unrounded value	
			angle of incidence is greater than critical angle so total internal reflection <i>OR</i>		3 max
			light strikes AB at an angle of 57° \checkmark		
			calculation showing sin of "refracted angle" = 1.1 \checkmark		
			statement that since 1.1 > 1 the angle does not exist and the light does not emerge \checkmark		
4.	а	iii	total internal reflection shown ✓	Judge angle of incidence = angle of reflection by eye or accept correctly labelled angles	2
			ray emerges at opposite face to incidence \checkmark	With sensible refraction in correct direction	

(Question 4 continued)

Q	Question		Answers	Notes	Total
4.	4. b i mass = « volume × density » $(0.75)^3 \times 920$ « = 388 kg » \checkmark energy required to raise temperature = 388 × 2100 × 20 « = 1.63 × 10 ⁷ J » \checkmark energy required to melt = 388 × 330 × 10 ³ « = 1.28 × 10 ⁸ J » \checkmark		energy required to raise temperature = $388 \times 2100 \times 20 = 1.63 \times 10^7 \text{ J} \times \checkmark$	Accept any consistent units	4
			$1.4 \times 10^8 \text{ «J} \mathbf{OR} 1.4 \times 10^5 \text{ «kJ} \mathbf{\checkmark}$	Award [3 max] for answer which uses density as 1000 kg ⁻³ (1.5× 10 ⁸ «J»)	
4.	b	ii	in solid state, nearest neighbour molecules cannot exchange places/have fixed positions/are closer to each other/have regular pattern/have stronger forces of attraction ✓	OWTTE Accept converse argument for liquids	1 max
			in liquid, bonds between molecules can be broken and re-form \checkmark		

Ques	stion	ion Answers	Notes	Total
5. a		$\frac{mv^{2}}{r} = G \frac{Mm}{r^{2}} \checkmark$ leading to $T^{2} = \frac{4\pi^{2}r^{3}}{GM} \checkmark$ $T = 5320 \ll s \gg \checkmark$ <i>Alternative 2</i> $\ll v = \sqrt{\frac{Gm_{E}}{r}} \gg = \sqrt{\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{6600 \times 10^{3}}} OR 7800 \ll ms^{-1} \gg \checkmark$ distance $= 2\pi r = 2\pi \times 6600 \times 10^{3} \ll m \Rightarrow or 4.15 \times 10^{7} \ll m \gg$ $\ll T = \frac{d}{v} = \frac{4.15 \times 10^{7}}{7800} \gg = 5300 \ll s \gg$	Accept use of ω instead of v	3

(Question	5	continued)
-----------	---	------------

Q	Question		Answers	Notes	Total
5.	b	i	$T = \left(\frac{2.90 \times 10^{-3}}{\lambda_{\text{max}}} \right) = \frac{2.90 \times 10^{-3}}{10.1 \times 10^{-6}} \checkmark$	Award [0] for any use of wavelength from Sun	2
			= 287 «K » <i>or</i> 14 « °C » ✓	Do not accept 287 °C	
5.	b	ii	wavelength of radiation from the Sun is shorter than that emitted from Earth «and is not absorbed by the atmosphere» \checkmark		
			infrared radiation emitted from Earth is absorbed by greenhouse gases in the atmosphere \checkmark		3
			this radiation is re-emitted in all directions «including back to Earth» \checkmark		
5.	с		peer review 🗸		
			international collaboration 🗸		1 max
			full details of experiments published so that experiments can repeated \checkmark		