Markscheme

November 2017

Physics

Standard level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a		arrow vertically downwards labelled weight «of sledge and/or girl»/W/mg/gravitational force $/ F_{g} / F_{\text {gravitational }}$ AND arrow perpendicular to the snow slope labelled reaction force/R/normal contact force/N/F $/ F_{N} \checkmark$ friction force/F/f acting up slope «perpendicular to reaction force»	Do not allow G/g/"gravity". Do not award MP1 if a "driving force" is included. Allow components of weight if correctly labelled. Ignore point of application or shape of object. Ignore "air resistance". Ignore any reference to "push of feet on sledge". Do not award MP2 for forces on sledge on horizontal ground The arrows should contact the object	2
1.	b		gravitational force/weight from the Earth «downwards» \checkmark reaction force from the sledge/snow/ground «upwards» \checkmark no vertical acceleration/remains in contact with the ground/does not move vertically as there is no resultant vertical force	Allow naming of forces as in (a) Allow vertical forces are balanced/equal in magnitude/cancel out	3
1.	c		mention of conservation of momentum OR $\begin{aligned} & 5.5 \times 4.2=(55+5.5) « v » \checkmark \\ & 0.38 « \mathrm{~m} \mathrm{~s}^{-1} » \checkmark \end{aligned}$	Allow $p=p^{\prime}$ or other algebraically equivalent statement Award [0] for answers based on energy	2

(Question 1 continued)

Question			Answers	Notes	Total
1.	d		same change in momentum/impulse the time taken «to stop» would be greater «with the snow» \checkmark $F=\frac{\Delta p}{\Delta t}$ therefore F is smaller «with the snow» OR force is proportional to rate of change of momentum therefore F is smaller «with the snow» \checkmark	Allow reverse argument for ice	3
1.	e	i	$\begin{aligned} & \text { «friction force down slope» }=\mu m g \cos (6.5)=« 5.9 \mathrm{~N} » \\ & \text { «component of weight down slope» }=m g \sin (6.5) «=6.1 \mathrm{~N} » \\ & \text { «so } a=\frac{F}{m} \text { » acceleration }=\frac{12}{5.5}=2.2 « \mathrm{~ms}^{-2} » \checkmark \end{aligned}$	Ignore negative signs Allow use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$	3
1.	e	ii	correct use of kinematics equation \checkmark distance $=4.4$ or 4.0 «m» \checkmark Alternative 2 KE lost = work done against friction + GPE \checkmark distance $=4.4$ or 4.0 «m» \checkmark	Allow ECF from (e)(i) Allow [1 max] for GPE missing leading to 8.2 «m»	2

(Question 1 continued)

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 .}$ | \mathbf{f} | calculates a maximum value for the frictional force $=\mu \mu R=» 7.5 « \mathrm{~N} » \checkmark$
 sledge will not move as the maximum static friction force is greater than
 the component of weight down the slope \checkmark | Allow correct conclusion from incorrect MP1
 Allow $7.5>6.1$ so will not move |

Question			Answers	Notes	Total
2.	a		it has a lepton number of 1 «as lepton number is conserved» \checkmark it has a charge of zero/is neutral «as charge is conserved» OR it has a baryon number of 0 «as baryon number is conserved» \checkmark	Do not credit answers referring to energy	2
2.	b		hadrons experience strong force OR leptons do not experience the strong force hadrons made of quarks/not fundamental OR leptons are not made of quarks/are fundamental hadrons decay «eventually» into protons OR leptons do not decay into protons	Accept leptons experience the weak force Allow "interaction" for "force"	2 max

Question			Answers	Notes	Total
3.	a	i	$\begin{aligned} & « l=\frac{R A}{\rho}=\frac{82 \times 8 \times 10^{-3} \times 2 \times 10^{-6}}{4.1 \times 10^{-5}} » \\ & 0.032 \text { «m» } \downarrow \end{aligned}$		1
3.	a	ii	$\begin{aligned} & \text { power }=1500 \times 8 \times 10^{-3} \times 0.032 «=0.384 » \\ & \text { «current } \leq \sqrt{\frac{\text { power }}{\text { resistance }}}=\sqrt{\frac{0.384}{82}} » \\ & 0.068 \text { «A» } \end{aligned}$	Award [1] for 4.3 «A» where candidate has not calculated area	2
3.	a	iii	quantities such as resistivity depend on the material OR they allow the selection of the correct material OR they allow scientists to compare properties of materials \checkmark		1
3.	b		as area is larger and length is smaller \checkmark resistance is «very much» smaller \checkmark	Award [1 max] for answers that involve a calculation	2

(continued...)
(Question 3 continued)

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | c | | |
| complete functional circuit with ammeter in series with resistor | | | |
| and voltmeter across it \checkmark | | | |

Question			Answers	Notes	Total
4.	a	i	$\begin{aligned} & « v=c \frac{\sin i}{\sin r}=» \frac{3 \times 10^{8} \times \sin (33)}{\sin (46)} \\ & 2.3 \times 10^{8}<\mathrm{ms}^{-1} » \end{aligned}$		2
4.	a	ii	light strikes $A B$ at an angle of 57° critical angle is $« \sin ^{-1}\left(\frac{2.3}{3}\right)=» 50.1^{\circ}$ angle of incidence is greater than critical angle so total internal reflection OR light strikes $A B$ at an angle of 57° calculation showing sin of "refracted angle" $=1.1 \checkmark$ statement that since $1.1>1$ the angle does not exist and the light does not emerge \checkmark	$49.2{ }^{\circ}$ from unrounded value	3 max
4.	a	iii	total internal reflection shown ray emerges at opposite face to incidence \checkmark	Judge angle of incidence = angle of reflection by eye or accept correctly labelled angles With sensible refraction in correct direction	2

(continued...)
(Question 4 continued)

Question			Answers	Notes	Total
4.	b	i	mass $=$ «volume \times density » $(0.75)^{3} \times 920 «=388 \mathrm{~kg} » ~ \checkmark$ energy required to raise temperature $=388 \times 2100 \times 20 «=1.63 \times 10^{7} \mathrm{~J}$ » \checkmark energy required to melt $=388 \times 330 \times 10^{3} «=1.28 \times 10^{8} \mathrm{~J}$ » \checkmark $1.4 \times 10^{8} \text { «J» OR } 1.4 \times 10^{5} \text { «kJ» }$	Accept any consistent units Award [3 max] for answer which uses density as $1000 \mathrm{~kg}^{-3}\left(1.5 \times 10^{8}\right.$ «J»)	4
4.	b	ii	in solid state, nearest neighbour molecules cannot exchange places/have fixed positions/are closer to each other/have regular pattern/have stronger forces of attraction \checkmark in liquid, bonds between molecules can be broken and re-form	OWTTE Accept converse argument for liquids	1 max

Question			Answers	Notes	Total
5.	a		$\frac{m v^{2}}{r}=G \frac{M m}{r^{2}} \checkmark$ leading to $T^{2}=\frac{4 \pi^{2} r^{3}}{G M} \checkmark$ $T=5320 « \mathrm{~S} » \downarrow$ Alternative 2 $\begin{aligned} & « v=\sqrt{\frac{G m_{E}}{r}} »=\sqrt{\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{6600 \times 10^{3}}} \text { OR } 7800 « \mathrm{~ms}^{-1} » \\ & \text { distance }=2 \pi r=2 \pi \times 6600 \times 10^{3} \text { «m» or } 4.15 \times 10^{7} « \mathrm{~m} » \\ & « T=\frac{d}{V}=\frac{4.15 \times 10^{7}}{7800} »=5300 « \mathrm{~s} » \end{aligned}$	Accept use of ω ṅstead of v	3

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	b	i	$\begin{aligned} & T=« \frac{2.90 \times 10^{-3}}{\lambda_{\max }}=» \frac{2.90 \times 10^{-3}}{10.1 \times 10^{-6}} \\ & =287 « \mathrm{~K} » \text { or } 14 «^{\circ} \mathrm{C} » \checkmark \end{aligned}$	Award [0] for any use of wavelength from Sun Do not accept $287^{\circ} \mathrm{C}$	2
5.	b	ii	wavelength of radiation from the Sun is shorter than that emitted from Earth «and is not absorbed by the atmosphere» infrared radiation emitted from Earth is absorbed by greenhouse gases in the atmosphere this radiation is re-emitted in all directions «including back to Earth» \checkmark		3
5.	C		peer review \checkmark international collaboration \checkmark full details of experiments published so that experiments can repeated \checkmark		1 max

